Atoms & Molecule Worksheet

MARSHMALLOW COLOR	CHEMICAL SYMBOL	ELEMENT	NUMBER OF BONDS
White	Н	Hydrogen	1
Pink	0	Oxygen	2
Orange	С	Carbon	4
Green	Cl	Chloride	1
Yellow	Na	Sodium	1

	MOLECULE SHAPE
Linear: st	traight bond
Angular:	bonds with angle
Tetrahed	ron: bonds with branches
Pyramid:	bonds in 3-D

Water

Molecule shape

Found where?

Chlorine

Molecule shape

Found where?

Carbon Dioxide

Molecule shape

Found where?

Molecule shape

Methane

Found where?

Sodium Bicarbonate

Molecule shape

Found where?

Sodium Chloride

Molecule shape

Found where?

Acetic Acid

Molecule shape

Found where?

Diamond

Molecule shape

Found where?

Atoms & Molecule Worksheet

Answer Sheet

MARSHMALLOW COLOR	CHEMICAL SYMBOL	ELEMENT	NUMBER OF BONDS
White	Н	Hydrogen	1
Pink	.0	Oxygen	2
Orange	С	Carbon	4
Green	Cl	Chloride	1
Yellow	Na	Sodium	1

MOLECULE SHAPE					
Linear: s	straight bond				
Angular:	bonds with angle				
Tetrahed	dron: bonds with branches				
Pyramid	: bonds in 3-D				

cı cı

Water

Molecule shape Found where?

H₂O Angular

Lakes, rivers, oceans

Chlorine
Molecule shape
Found where?

Cl₂
linear
Bleach, swimming pool

H H H

Carbon Dioxide

Molecule shape

Found where?

CO₂ Methane
linear Molecule shape

Air, exhaled breath Found where?

CH₄ tetrahedron

Natural gas

Sodium Bicarbonate

Molecule shape

Found where?

NaHCO₃

tetrahedron

Baking soda

Sodium Chloride

Molecule shape

Found where?

NaCl

linear

Table salt

Acetic Acid

Molecule shape

Found where?

CH₃COOH or C₂H₄O₂

tetrahedron

Vinegar

Diamond

Molecule shape

Found where?

C₅

pyramid

Stones

Atoms & Molecule Evaluation

1.	How many atoms Water =	make up each molecule?	Sodium Bicarbonate =	***************************************
	Chlorine =		Sodium Chloride =	
	Carbon Dioxide	=	Acetic Acid =	
	Methane =		Diamond =	-
2.	How many bonds	does each molecule need?		
	Water =		Sodium Bicarbonate =	
	Chlorine =		Sodium Chloride =	
	Carbon Dioxide	=	Acetic Acid =	
	Methane =		Diamond =	
		mber of atoms bonded to the		molecule?
5.	What is the differ	rence between a molecule an	d a compound?	
6.	Why does CO ₂ nee	ed two toothpicks between ea	ch oxygen atom and the	carbon atom?

Atoms & Molecules Evaluation Answer Sheet

1. How many atoms make up each molecule?

Water =
$$\underline{3}$$
Sodium Bicarbonate = $\underline{6}$ Chlorine = $\underline{2}$ Sodium Chloride = $\underline{2}$ Carbon Dioxide = $\underline{3}$ Acetic Acid = $\underline{8}$ Methane = $\underline{5}$ Diamond = $\underline{5}$

2. How many bonds does each molecule need?

Water =
$$\underline{2}$$
Sodium Bicarbonate = $\underline{6}$ Chlorine = $\underline{1}$ Sodium Chloride = $\underline{1}$ Carbon Dioxide = $\underline{4}$ Acetic Acid = $\underline{8}$ Methane = $\underline{4}$ Diamond = $\underline{10}$

- 3. How does the number of atoms bonded to the central atom affect the molecule? <u>It creates</u> the shape of the molecule
- 4. What is the difference between an atom and an element? <u>Atoms may be different from each other, but an element is a substance in which all the atoms are the same kind.</u>
- What is the difference between a molecule and a compound?
 Molecule = atoms of elements held together by chemical bonds.

 Compound = substance in which molecular elements combine with each other.
- 6. Why does CO₂ need two toothpicks between each oxygen atom and the carbon atom?

 To satisfy the bonding rule, a double bond is needed between each oxygen and the carbon.

Challenge Work

Molecules and Compounds Worksheet

Atoms - Build Color Chart			Chemical Common C				
Hydrogen (H)	Blue	Sand		SiO ₂		Aspirin	C ₉ H ₈ O ₄
Carbon (C)	Yellow	Sugar		1000	12 0 6	Advil	C ₁₃ H ₁₈ O ₂
Oxygen (O)	Red	Rust		FeO:	1170 I.T.	Baking Soc	da NaHCO ₃
Nitrogen (N)	Black	Gasolin	е	C ₈ H	18	Ruby	Al ₂ O ₃
Sodium (Na)	White	Salt		NaC		Emerald	Be ₃ Al ₂ SiO ₆
Chlorine (CI)	Green	Water		H ₂ O		Caffeine	$C_8H_{10}N_4O_2$
				C ₆ H ₈ O ₆		Peppermi	nt C ₁₀ H ₇ O
My compound	d is	,	and t	he cl	nemical f	ormula is	
Count th	ne atoms			7			
	nolecule						
	_	latoms C	atom	」 ∟ s () atoms	N atoms	Na atoms
	2.22						
How man	y atoms are in one	molecule o	f you	com	pound?		
	low to determin nust count the n		_				
Count the atoms in one molecule							
180	r	latoms C	atom	s () atoms	N atoms	Na atoms
How many atoms are in one molecule of your compound?							
The chemical formula of the mystery compound is,							
9	which means it	can only be	9			•	

If you take away any atom from one of the molecules, will it still be the same compound?

Yes / No

Answer Sheet

Molecules and Compounds X Worksheet

Atoms - Building Blocks Color Chart			Chemical Formula of Common Compounds				
Blue	Sand	SiO ₂	Aspirin	C ₉ H ₈ O ₄			
Yellow	Sugar	$C_6H_{12}O_6$	Advil	C ₁₃ H ₁₈ O ₂			
Red	Rust	FeO ₃	Baking Soda	NaHCO ₃			
Black	Gasoline	C ₈ H ₁₈	Ruby	Al_2O_3			
White	Salt	NaCl	Emerald	Be ₃ Al ₂ SiO ₆			
Green	Water	H ₂ O	Caffeine	C ₈ H ₁₀ N ₄ O ₂			
	Vitamin C	$C_6H_8O_6$	Peppermint	$C_{10}H_7O$			
	Blue Yellow Red Black White Green	Blue Sand Yellow Sugar Red Rust Black Gasoline White Salt Green Water	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			

My compound is Bakin	g Soda	_, and the	chemical	formula is	NaHCO ₃
Count the atoms in one molecule	1 H atoms	1 C atoms	3 O atoms	0 N atoms	1 Na atoms
How many atoms are in	one molecul	e of your c	ompound?	6	

Now to determine the identity of a mystery compound, we must count the number and types of atoms in a molecule.

Count the atoms in one molecule	7	10	1	0	0	
	H atoms	C atoms	O atoms	N atoms	Na atoms	
How many atoms are in one molecule of your compound?						
The chemical formula of the mystery compound is $C_{10}H_70$						
which means it can only be Peppermint						

If you take away any atom from one of the molecules, will it still be the same compound?

